


The story so far

* Multidimensional DP is not going to happen

* We have some efficient local alighnment
heuristics (BLAST, FASTA, etc.)

* But these are not directly extensible to larger
sets of sequences



Efficient msa???

* As with database searching, we want to trade
optimality for efficiency

e But fast pairwise methods will not scale well
(because we still have that S%#&*
multidimensional matrix)

e So, we need heuristics that are tailored to msa



Overview




The proving ground for MSAs

Example from BAIIBASE:
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BALIBASE is actually horribly broken

- Edgar, C. (2010) Quality measures for protein alignment benchmarks.
Nucleic Acids Res 38: 2145-2153

But the point remains — these are extremely difficult problems!



What we need

* Algorithms that are better than exponential in their
complexity

* (Pairwise DP is allowed — n? times a constant is not so
bad)

e Often an OBJECTIVE FUNCTION (e.g., Sum of Pairs)

. 2 x S(N,Q)
> 0 _ +2xS5(Db,Q)
z % SP(N)Q)QID) T S(Q’Q)

+S(N,D)



Progressive Alignment (1980s)

Homologous
sequences

But isn’t this part an entire course module...?

1 2 3

=

Distance matrix
from pairwise
alignments

Serial sequence
and profile alignments

Guide tree

Multiple Sequence
Alignment




MUSCLE - MUItiple Sequence
Comparison by Log-Expectation




MUSCLE (Edgar, 2004)

* Three stages:

1. Draft progressive
2. Improved progressive
3. lterative refinement

MUSCLE actually starts out with a compressed alphabet
There are many details and tweaks that | will not be talking about

Edgar (2004) Nucleic Acids Res.



MUSCLE Step 1

1.1 k-mer 1.2 1.3 progressive
_________ counting UPGMA alignment
- N N | ;
> >  MSA
unaligned _ = |
sequences k-mer distance TREE1
matrix D1

Unaligned sequences to k-mers
k-mer similarity for a pair of sequences:

5 k 6XY= 1 if k-mer is present in both
XY ( mer) 0 otherwise

F _all _kmers
mln(LX , LY) — k + 1 Normalizing constant

(length of the shorter sequence)
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MUSCLE Step 1

1.1 k-mer 1.2 1.3 progressive
counting UPGMA alignment
— — >
unaligned —
sequences k-mer distance TREE1
matrix D1

We convert F to a distance measure:

And populate a triangular distance matrix with d values

kmer
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MUSCLE Step 1

1.1 k-mer 1.2 1.3 progressive
_________ counting UPGMA alignment
— r ; ;
> > > - MSA1
unaligned ot |
sequences k-mer distance TREET
matrix D1
UPGMA: Unweighted Pair Grouping with Arithmetic Mean
1 2 3
1+3 | 2 3
1 5.5
1+3 25 /2.5
2 10
2 11 1 3 2
3 5 12




MUSCLE Step 1

1.1 k-mer 1.2 1.3 progressive
_________ counting UPGMA alignment
— > >  MSA
unaligned S — :
sequences k-mer distance TREE1
matrix D1

Progressive alighnment based on the UPGMA ‘guide’ tree:

Convert each sequence to a profile
Align profiles in prefix order based on the tree

Each pairwise alignment is done with dynamic
programming

But we only need to do 4n? operations instead
1 2 3 4 5 of n°>
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How to align profiles

* First of all, sequences are weighted to reflect
non-independent contributions

__g Hbb_Human b.Dl:

226 Tl _

Hb_Horse: 0225 - 081
65

1 peeksa 1
061 2 geekaa 1
-~ 219 Hba_Human:  0.194 3 padktn a
D2 e Hone: 020 +.061 /4 4 aadktnvipa
S MygPhyca: 0411 +.015 /5

39 GRS_Petma: 0398 +0.062 /6
o Lgb2 Luply: D442 5 egewglilhv
& aaekt sa

Weighting sequences
by branch independence Scoring matches based on weights

and scoring matrix

PAM250(T,V) * (w1l + w5)
(Thompson et al., 1994) +PAM250(T,1) * (w1l + w6)
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Muscle Step 2

2.1 compute
<~ > %ids from MSAT

< Kimura distance
i b : | matrix D2
e 2.3 progressive »
MSA2 alignment et 2.2 UPGMA

What is different here?
The distances used to build the initial guide tree were very crude

MUSCLE uses the first sequence alignment to compute Kimura distances:

dKimum = — ln(l — [ —-) | = % identical

Multiple substitutions!
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Muscle Step 2

2.1 compute
< > %ids from MSA1

------------------------- iz ' - . .
i Kimura distance
i ki :] matrix D2
. 2.3 progressive .
MSA2 alignment TREE?2 2.2 UPGMA

With our more-accurate distances, build a new matrix, and a new UPGMA tree

Then build the multiple sequence alighnment as before
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MUSCLE Step 3

.......................

s v S ST i e el
E E E E A'|l. "____--""‘ 1'.-". :_ . _r-"v_ S _.:\,\_: - _: e e e
N ../ : ! \ : : - s N
e e e e s S H A

| 7 . Yes
A : ; 4
profiles MSA 3485P | . save

...................

< 3.2 compute
subtree profiles MSAS3

3.1delete S~ o
edge from TREE2 e
giving 2 subtrees

Why do we do this?
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The classic limitation of
progressive alignment

* “once a gap, always a gap”

—>» AGCTAGCAG--ATA

/,f’——> AATT=--GCA--ACA

AATTGCACATTACA




By breaking a branch of the guide tree, removing
all gap-only columns and realigning the two
profiles, we may find a better alignment

.......................

No,
e s ) (LS delefe
¥ I:j> e ol I 7 e T
= |33re-align \gp _ .~ Yes,
/?; 3.2 compute | profiles 3.4 5’; I e—— . save
\f\ subtree profiles SCOIEREHERT  msas
3.1 delete < /
.1 delete g
repeat
edge from TREE?2 i SV __l? s

giving 2 subtrees
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Advantages of MUSCLE

* |t is ridiculously FAST — where quick n’ dirty is
appropriate, it makes extensive use of the
fastest available methods

* Phase 3 (iterative refinement) is very effective
in overcoming the limitations of ‘traditional’
progressive methods
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MAFFT

Multiple alignment using fast Fourier transform

1. Represent amino acid sequences as vectors of size and polarity

Katoh et al. (2002) Nucleic Acids Res.



MAFFT

Multiple alignment using fast Fourier transform

1. Represent amino acid sequences as vectors of size and polarity
2. Look at correlation of these properties at different offsets

2
k=2 mp GLWG EEGLWLFF]-- sequence 1
-=-K GAEQEGLFVFFGG sequence 2 . 2
u Regular correlation: O(n?)
1 .
Fast Fourier Transform: O(nlogn)
k=-1 mp -GLW EEGLWLFF sequence 1
KGVF QEGLFVFFGG- sequence 2

Katoh et al. (2002) Nucleic Acids Res.
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MAFFT

Multiple alignment using fast Fourier transform

1. Represent amino acid sequences as vectors of size and polarity
2. Look at correlation of these properties at different offsets

2

k=2 P GLWG EEGLWLFF|-- sequence 1
- =K GAEQEGLFVFFGG sequence 2
i

k=-1 m) -GLW! EEGLWLFF sequence 1
KGVF QEGLFVFFGG- sequence 2

3. Use these as anchor points for DP

sequence 1
12 3 45
LT T TTT
=Nl
N2 S, ‘
Q) .
e 3 Sz ‘
[ |
3 :
o I
3 4 i
s s

Katoh et al. (2002) Nucleic Acids Res.

Regular correlation: O(N?)
Fast Fourier Transform: O(N log N)

sequence 1

sequence 2
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MAFFT

Multiple alignment using fast Fourier transform

1. Represent amino acid sequences as vectors of size and polarity

2. Look at correlation of these properties at different offsets

2

k=2 mp GLWG, EEGLWLFF

== sequence 1

KGVREGAEQEGLFVFF

GG sequence 2

i

k=-1 mp -GLW EEGLWLFF sequence 1
KGVF QEGLFVFFGG- sequence 2
3. Use these as anchor points for DP
sequence 1
12 3 45
\ | 1
1 ]s | }
o 332 |
§ 31 |Ss . ‘
S 5
2 4 N
s s

4. Progressive alignment

Katoh et al. (2002) Nucleic Acids Res.

Regular correlation: O(n?)
Fast Fourier Transform: O(nlogn)

sequence 1

sequence 2

25



T-COFFEE

Tree-based Consistency Objective Function for alignment Evaluation

and other consensus-based methods)

* Input sets of alignhments of the same sequences (generated e.g.
using different other programs, other parameter settings)

Pairwise alignments!

SeqgA GARFIELD
SeqgB GARFIELD

SeqA GARFIELD
SeqC GARFIELD

Squ GARFIELD
eq:

TH |LAS ) FAT CAT  prim. Weight = 88
THE [FaSt| cAT - Prim. Weight

THE JLAST| FA-T CAT

Prim. Weight =77

THE JVERY] FAST CAT

THE |LAST
THE | ===

FAT CAT

FAT CAT Prim. Weight =100

SegqA GARFIELD THE JLAS

Seq@gB GARFIELD THE JFAST

SeqA GARFIELD T

NRNRRAN
SeqC GARFIELD

SeqgB GARFIELD

SeqgA GARFIELD TH

HE
i
THE [VER
111

HE

LAS

E JLAST)

FAT CAT

11 Weight = 88
CAT €8

FAT C\A\’I{
i

FAT CAT
111

Seq@D THE

SeqgB GARFIELD THE

FAT FAT

AN JANY

FASTY CAT

Weight = 100

Notredame et al. (2000) J. Mol. Biol.

SeqgB GARFIELD THE FAST) CAT
SeqgC GARFIELD THE VERY JFAST| CAT

SeqgqB GARFIELD THE FASTlCAT
SegD ---~--—- THE |[FA-Tj CAT

THE VERY FAST CAT
TH

SeqC GARFIELD

Prim Weight = 100

Prim. Weight = 100

Prim. Weight = 100

Seq@D -——---- E ---— FA-T CAT
Extended Library
- iiiiifff i}ii: N ibAtls ill
SegB GARFIELD THE

‘ Dynamic Programming

}

SeqgA GARFIELD THE LAST FA-
SeqB GARFIELD THE ---- FAST

T CAT

CAT
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ProbCons

probabilistic consistency-based alighnment

* Key idea: best alignment vs the set of good
alignments (expressed as a probability: see next
lecture)

* The pairing of amino acids in the best alignment
might not be the pairing we see across a greater
cumulative probability of good alignments

* The point: replace the PAM matrix score for a pair of
amino acids with their cumulative probability across
all alignments, then do dynamic programming!

(see bonus slides at end of deck)

Do et al. (2005) Genome Res.



BAIli-Phy

- Joint-inference of alignment and guide-tree

- Hand-wavey Bayesian approaches we will talk
about during phylogenetics

- Most principled approach.

- INCREDIBLY and IMPRACTICALLY slow.



Comparison

0.8
0.6
o Method Benchmark MattBench Homstrad Sisyphus BAIIBASE
5 Data set SK054  proteasome  AL00048098  BALBS2?13
s Mazx. Seq. Len. 270 250 117 688
?-;,, g DiAlign 0.0 0.0 0.0 0.0
mm MAFFT-G Prime 0.1 0.0 0.0 0.0
0.4 KAlign 0.1 0.0 0.0 0.1
B Muscle Clustal-Omega 0.4 0.3 0.1 1.5
—» Muscle 0.5 0.4 0.1 1.0
— MAFFT-G-INS-i 0.7 0.7 0.3 2.0
ProbAlign 1:7 1.4 0.4 7.9
0.2 - Propiens —» ProbCons 3.1 2.6 0.6 12.6
CONTRAlign 5.8 6.2 1.4 42,0
Em TCoffee Prank 48.5 1:16.1 9.4 4:14.7
Promals 14:11.5 12:22.1 5:06.2 24:03.2
— T-Coffee 46:47.2 58:04.7 7:06.5 59:18.8
BAIli-Phy 48:00:00.0 48:00:00.0 48:00:00.0 48:00:00.0
0.0— ) 0 0 T
4 - o M
< < T v Runtime
v v B 8
a fa) = [
c e [. : (s)
il [ v n
Vv Vv N o
o n o~
v o
o . .
Identity Bin
S >
More dissimilar (hard) More similar (easy)
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Conclusions

* Lots of different ways to approach the
problem
— Progressive
— Consensus
— lterative

e Usually (but not always) pairwise DP is an
important component of the method



